

Beyond Coding: Lean Learning for Real-World Software Engineering

Chatley, Roberta Fraca, Estibaliza Bailey, Jasona Procaccini, Ivana Amin, Zakia

Department of Computing, Imperial College London, United Kingdoma

Corresponding Author’s Email: r.chatley@imperial.ac.uk

KEY WORDS: software engineering, lean learning, industry-relevant experience,
engineering module design, curriculum design

ABSTRACT

Computer Science education often focusses heavily on programming, but modern software
engineering demands a broader set of skills beyond writing code. We present a case study
of a Software Systems Engineering module, designed to emphasise non-programming aspects
of software development from early in the degree.

The core philosophy of the module is that experiencing the full software development and
deployment lifecycle is more valuable in a limited timeframe than building sophisticated
features requiring a lot of coding. Students start from a skeleton web application and focus
on deployment, automated testing and quality checks, connection to a database, and
integration of public APIs. Later, students explore concepts such as microservices and cloud
scaling. This approach teaches the “engineering” side of software development, instead of
focussing on writing lines of code.

Beyond knowledge of programming languages, software engineers must integrate diverse
tools, libraries, and APIs. Working productively in a professional development team also
requires familiarity with version control, continuous integration, automated quality checks,
and cloud deployment. While many curricula would categorise these as advanced topics to
be covered once programming has been mastered, we see these as threads that can be
taught in parallel.

We believe this is particularly crucial for students in conversion master's degrees. These
students come from non-computing backgrounds and have limited time to learn not only
core computer science theory, but also industry-relevant engineering experience.

INTRODUCTION

With the growth of the technology sector, there is an increasing demand for software
engineering expertise. Conversion degrees, particularly at the master’s level, are very much
in demand. These offer the opportunity for graduates in other fields to add technical
computing skills to their existing discipline knowledge, putting them in a position to work in
jobs where they develop new software products to advance the state of practice. It is also

common for career-changers to use conversion degrees to re-train in depth, to open up
new future career directions (Li, 2025).

A key difficulty in designing an effective conversion master’s programme is the short
timeframe. Typically, students follow a one year course compared with three or four years
for an undergraduate programme. Our own master’s programme spans12 months, from
October to September. Building both breadth and depth of skills and knowledge within this
short time period is challenging. Traditionally, Computer Science programmes start with a
focus on core skills in programming, algorithms and data structures. Undergraduate
programmes may spend the whole of the first year on these fundamentals, before moving on
to more applied courses and projects in later years (Chatley and Field, 2017).

The role of a modern software engineer comprises not only coding individual components
but combining and integrating components into a larger system. Software engineers also
need to be familiar with techniques for integrating components, quality assurance, agile
methods, tools to support incremental and iterative delivery, databases, and designing
systems deployed in the cloud (SFIA Foundation, 2022). This combination of topics, which
might previously have been thought of as more of the remit of the “software architect”
(Fowler, 2019), have become part the daily work of most practising software engineers.

Many works in the literature have looked at teaching these Software Engineering skills as
part of a university degree. Pantoja Yépez et al. (2024) surveyed 56 case studies with a focus
on skills related to “software architecture”. Their study found that these skills were typically
categorised as “advanced topics” and are typically developed later in a degree program, or
even at the postgraduate level, once students have already built a solid foundation in coding
and basic software development practices. In a one-year master’s programme, we do not
have the luxury of spending so much time on fundamentals before proceeding to these
“advanced topics”, but we still want to equip our students with a broad range of industry-
relevant software engineering skills.

AIMS AND OBJECTIVES

Our aim was to design a learning experience that would prepare conversion students for
industrial software engineering roles, exposing them to modern techniques and
technologies, within the compressed timeframe of a one-year master’s programme. A
particular challenge here was that we could not assume any previous experience with coding
and software development - students would learn introductory programming in another
module within the programme. However, rather than wait until that module was completed,
we wanted to find a way to start teaching broader software engineering skills from the start
of the degree.

PROBLEM AND INTERVENTION

In the previous iteration of our conversion master’s curriculum, we split the year into two
main teaching terms. In the first term we concentrated on traditional computing

fundamentals, with a large emphasis on programming in C++. By the end of this first term,
most students had become competent C++ programmers, but they had worked individually
rather than collaboratively, and had written self-contained programs, rather than developing
larger software systems integrating multiple components and technologies.

In the second term, we had the students form teams of 5-6 and work collaboratively on a
project developing a software system to solve a particular problem. These team projects
were typically set and supervised by one of the academic staff, who acted as both the
customer and the assessor. While Project Based Learning (PBL) is traditionally seen as a
good approach for teaching software engineering skills (Kokotsaki, Menzies and Wiggins,
2016; Souza, Moreira and Figueiredo, 2019), and indeed many teams did succeed in building
software to meet their project brief, we perceived several problems:

1) There was great variety in the project briefs set by the different supervisors. This
meant that different groups had very different technical challenges to solve and had
very different learning experiences.

2) After the first term, the students were competent C++ programmers, but few of the
group projects involved writing C++.

3) It was hard to deliver a lecture course that was relevant to all groups, covering
topics that much of the class would find helpful for their projects.

4) Students felt quite unsupported and did a lot of self-study to learn new programming
languages and technologies.

5) Student teams typically did not apply rigorous engineering practices around things
like quality assurance, or scalable infrastructure, partly because of perceived time
pressure, but also because they had not been taught how to apply them before they
started their projects.

Given these problems, we decided to redesign the way software engineering skills are taught
in this MSc programme, replacing the varied group projects module with a more structured
module called Software Systems Engineering (SSE). The new module runs across two terms,
starting right at the beginning of the degree programme. The module design emphasises
non-programming aspects of software development from early on.

We designed the module using lean techniques, following the pedagogical principles
discussed by Parsons and MacCullum (2019). Our aim was to regulate the flow of learning,
covering many different topics, but without overwhelming the students with theory before
putting each concept into practice. Having successfully followed this approach in other
modules (Chatley and Field, 2017), we divided the content into bite-sized chunks, each of
which combined a little theory with a practical application, structured as a weekly cycle:

• Minimal theory – lectures with just enough background to support practical work
• Hands-on exercises – a focussed task (2-3 hours) applying a key practice
• Easily assessable submission – to enable a weekly rhythm, a concrete deliverable that

was quick and easy for Teaching Assistants (TAs) to check - e.g. a link to a live
website, a GitHub repository, or a short document with screenshots.

The topics covered in the module are detailed in Table 1. We aimed for a broad coverage,
rather than going deep into a smaller number of topics. Each topic was supplemented with
an exercise. Students were offered lab sessions where they were encouraged to complete
the exercise asking for help if needed. For most cases, students worked in pairs.

Topic / skill Exercise Description

Web Sites and Web Servers Students create a simple static web site using GitHub
pages. They are initially encouraged to create a GitHub
account and commit/push small changes

Web Applications
Students create a simple dynamic web application using
Python and Flask. They can then manually deploy their
application to the public internet via a bespoke PaaS

Build Pipelines Students use GitHub Actions to create a build pipeline
to automate the deployment of their web application

Continuous Delivery Students implement unit tests and other checks for
their code, then include them in their build pipelines

Using APIs
Students investigate a publicly available data API and
extend their application to consume its data

Databases Students are introduced to relational databases and
learn to query and update data with SQL

Cloud Students deploy their web applications to the cloud (in
our case using Microsoft Azure)

Containers Students are introduced to Docker and using
containers to deploy applications to the cloud

Microservices Students learn the concepts of Microservices to
develop a system of multiple coordinating components

Table 1. Topics delivered in the Software Systems Engineering module

This new design format for the module focuses on the students experiencing the full
software development and lifecycle, which is considered more valuable than building
sophisticated features requiring a lot of coding in the mentioned limited timeframe. By
replacing the more free-form projects with this structured programme, we know that each
student has covered the same technical topics, we can support their learning better through
lectures and tutorials, and we can scaffold their learning to incrementally introduce new
theory and tools as they build more sophisticated systems over the duration of the course.

OUTCOMES

We collected some qualitative data to analyse whether the lean-learning approach we
followed was appropriate for this context. Students were sent an anonymous survey one
month after the end of the module. The goal of the survey was to gather the students’
opinion on the following questions:

• Do they feel that they are industry ready after completing the module?
• Do they deem it acceptable to teach “advanced” topics earlier in their degree,

particularly to those without prior coding experience?
• Did the “broad rather than deep, and practical rather than theoretical” module

philosophy work for them?

In their responses to the first question, students listed topics that they felt prepared them
the most for industry, such as “[…] considerations of cost, speed, reliability; practical cloud
computing exposure; CI/CD and automation, for efficient development” and “[…] getting very
comfortable with git, testing, and automatic checks when deploying”. Students also highlighted
how SSE topics had come up in job descriptions and interviews: “I actually had a question
about GitHub actions in one of my job interviews […]” and “[…] lots of the things we utilised in
SSE (idea of containers ci/cd etc) appear in job requirement”. The general feeling was that the
course did provide a good coverage of industry-relevant topics.

In considering the teaching of “advanced” topics earlier in their degree, although the
students rightly acknowledged their limited coding experience (“As conversion students, we do
not master any of the programming languages like Python, Java, or html […]”), they found that
learning about common professional tools and patterns by doing helped them attain a global
intuition of “what to do and why” on approaching a software engineering project: “[…]
learning about GitHub actions was definitely useful, not only in the practical sense but also in terms
of better understanding […] during development”.

We finally asked students to describe how they felt about the overall effectiveness of the
module. The students commented saying that the module “provided a nice contrast to some of
the deeply theoretical modules we cover” and that “it was nice to do anything with the new topic in
the seminars. Then, with foundations laid, it was easy to self-learn and go deeper”. Some of them
still found some of the more technical topics difficult to tackle: “[…] first time being
introduced to these concepts from an implementation perspective is always hard”; “I still don't really
know how to use Docker”. While this suggests that our balance of broad coverage vs in-depth
mastery will need some refining, providing students with a lightweight foundation where
they can freely choose to go deeper through self-study seems positively received.

DISCUSSION AND CONCLUSION

The course structure, following the lean-learning weekly-cycle approach described in the
previous sections, creates momentum through weekly assignment deadlines. By

concentrating on practical application, staff can spend less time on transmission of content,
and more time to one-on-one and small group interactions in labs. Other case studies in the
literature, such as Anslow and Maurer (2015), show the benefit of such weekly cycles
combining theory and practice. However, in their case, Anslow and Maurer focussed on
project management and process, while we wanted to cover a wide range of technical
topics.

Students incrementally build knowledge and skills week-by-week. We observed that within
just six hours of tuition, students progressed from having no web development experience
to deploying a functional application on the public internet. This rapid advancement offers
students a tangible sense of achievement while reinforcing a grasp on fundamental
engineering concepts.

The survey completed by students after the course shows that they feel they have acquired
skills that are demanded in industry. The lean methodology of the course, described as
broad rather than deep and practical rather than theoretical, structured in small chunks, seems
to have been effective in gradually growing skills in a practical way from the beginning of the
module.

However, there is still a sense that, without a depth of technical knowledge, and particularly
programming skills, some of the topics covered have not been deeply understood. Due to
the rapid spread of AI tools supporting software development, many students were able to
build “working” applications without truly understanding what they had done or how the
system they built worked internally.

Given the rapid pace of change in the technology sector, particularly after the advent of AI,
we have open questions on whether it is more effective to teach fewer topics in depth
down to the low-level fundamentals, or to focus instead more on higher-level concerns such
as data governance, security, cost awareness, energy usage and sustainability, and delegate
the lower-level coding tasks to an AI. These are perhaps the main concerns of future
software engineers, as their daily work moves beyond coding.

REFERENCES

Anslow C. and Maurer, F. (2015). ‘An Experience Report at Teaching a Group Based Agile
Software Development Project Course’, In: Proceedings of the 46th ACM Technical Symposium
on Computer Science Education (SIGCSE ’15). ACM, New York, NY, USA, pp. 500–505.
https://doi.org/10.1145/2676723.2677284

Chatley, R. and Field, T. (2017) ‘Lean learning: Applying lean techniques to improve software
engineering education’, In: 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering Education and Training Track (ICSE-SEET), pp. 117–126.
https://dl.acm.org/doi/10.1109/ICSE-SEET.2017.5

Kokotsaki, D., Menzies, V., and Wiggins, A. (2016). ‘Project-based learning: A review of the
literature. Improving Schools’, 19(3), 267-277. https://doi.org/10.1177/1365480216659733

https://doi.org/10.1145/2676723.2677284
https://dl.acm.org/doi/10.1109/ICSE-SEET.2017.5
https://doi.org/10.1177/1365480216659733

Fowler, M. (2019) Software Architecture Guide. Available at:
https://martinfowler.com/architecture/ (Accessed: 7 May 2025).

Li, Z. (2025) ‘Fostering qualified software engineers via software engineering conversion
programmes’, In: Proceedings of the 37th IEEE Conference on Software Engineering Education and
Training (CSEE&T 2025).

Pantoja Yépez, W., Hurtado Alegría, J., Bandi, A. and Kiwelekar, A. (2024) ‘Training software
architects suiting software industry needs: A literature review.’ Education and Information
Technologies. 29(9), pp. 10931-10994 https://dl.acm.org/doi/10.1007/s10639-023-12149-x

Parsons, D., MacCallum, K. (eds) (2019) Agile and Lean Concepts for Teaching and Learning.
Springer, Singapore. https://link.springer.com/book/10.1007/978-981-13-2751-3

SFIA Foundation (2022) SFIA View: SFIA 9 Software Engineering Competencies. Available at:
https://sfia-online.org/en/framework/sfia-9 (Accessed: 7 May 2025).

Souza, M., Moreira, R. and Figueiredo, E. (2019). ‘Students Perception on the use of Project-
Based Learning in Software Engineering Education’. In: Proceedings of the XXXIII Brazilian
Symposium on Software Engineering (SBES '19). Association for Computing Machinery, New
York, NY, USA, 537–546. https://doi.org/10.1145/3350768.3352457

https://martinfowler.com/architecture/
https://dl.acm.org/doi/10.1007/s10639-023-12149-x
https://link.springer.com/book/10.1007/978-981-13-2751-3
https://doi.org/10.1145/3350768.3352457

