
Creating a Student-Friendly PaaS Platform: Experiences with
Tsuru in Software Engineering Education

Robert Chatley
rbc@imperial.ac.uk

Imperial College London
United Kingdom

Jason Bailey
jason.bailey@imperial.ac.uk
Imperial College London

United Kingdom

Ivan Procaccini
ivan.procaccini14@imperial.ac.uk

Imperial College London
United Kingdom

Zaki Amin
zaki.amin20@imperial.ac.uk
Imperial College London

United Kingdom

Estibaliz Fraca
e.fraca@imperial.ac.uk
Imperial College London

United Kingdom

Abstract
Teaching modern software engineering requires balancing authen-
tic industry practices with accessibility for students. Cloud plat-
forms like AWS and Azure are powerful but can be overly complex
for educational contexts. To address this, we developed an internal
Platform-as-a-Service (PaaS) using the open-source Tsuru platform.
This solution simplifies deployment, enabling students to focus
on building and iterating on applications without the need for di-
rect interaction with complex cloud infrastructure, and facilitates
administration and access for instructors to support the learning
experience.

This paper presents our experiences using this platform in soft-
ware engineering courses. We discuss challenges, lessons learned,
and practical advice for educators aiming to create similar solutions
to support student learning.

CCS Concepts
• Social and professional topics → Software engineering edu-
cation; • Computer systems organization→ Cloud comput-
ing; • Software and its engineering→ Software as a service
orchestration system.

Keywords
Cloud, Platform, PaaS, Software Engineering Education
ACM Reference Format:
Robert Chatley, Jason Bailey, Ivan Procaccini, Zaki Amin, and Estibaliz Fraca.
2025. Creating a Student-Friendly PaaS Platform: Experiences with Tsuru
in Software Engineering Education. In 33rd ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE Companion ’25), June 23–28, 2025, Trondheim, Norway.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3696630.3727239

1 Introduction
The technical skills needed by a modern software engineer ex-
tend far beyond programming. Developing modern systems often

This work is licensed under a Creative Commons Attribution 4.0 International License.
ESEC/FSE Companion ’25, June 23–28, 2025, Trondheim, Norway
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1276-0/2025/06
https://doi.org/10.1145/3696630.3727239

involves integrating many different tools and technologies, and
building on top of ever more sophisticated products and services
provided by vendors. As educators, we want to create an authentic
learning experience for our students, introducing them to modern
technology that is representative of what they might use in indus-
try. At the same time, we want students to avoid getting distracted
by the detail of complex tools in a way that prevents them from
seeing the bigger picture and learning overarching principles. This
problem presents itself particularly when teaching students to build
systems that are deployed online.

Cloud providers such as Amazon Web Services (AWS), Google
Cloud Platform (GCP) and Microsoft Azure offer a vast range of
resources and services that support engineers in building internet
applications. At the time of writing, AWS offers over 200 different
cloud services. While these Infrastructure-as-a-Service (IaaS) en-
vironments provide engineers with immense power, configuring
and managing them can be highly complex and come with a steep
learning curve.

A current trend in industry is the adoption of developer plat-
forms [6] and platform engineering teams [5] that build abstractions
in front of cloud providers’ offerings, helping product engineers to
navigate their complexities. Developer platforms usually provide a
templated path to deploy an application to production, removing
much of the complexity of configuring cloud resources. This allows
developers to concentrate on building new features and iteratively
refining their products, rather than the technical complexities of
deploying and operating their applications in the cloud.

Some vendors offer these streamlined developer platforms as
commercial services, known as Platform-as-a-Service (PaaS). How-
ever, we have not found a current commercial PaaS that fits easily
with our educational scenario - notably, most require students to
enter credit card details when registering, something we cannot
ask our students to do.

At our university, we teach software engineering with an em-
phasis on project-based learning. We teach technical skills for en-
gineering high-quality systems together with iterative methods
for product design and delivery [1]. We thread concepts like De-
vOps [7] throughout the curriculum, so that the associated tools
and techniques become something that students use across projects
in many different courses, not because they are told to, but because
they know they will help them produce better quality results [2].

https://doi.org/10.1145/3696630.3727239
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3696630.3727239


ESEC/FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Chatley et al.

To support this style of teaching, we wanted a deployment solu-
tion that balances simplicity of use for students with professional
relevance. Our aim was to create an internal PaaS platform which
enables students to deploy applications reliably and securely with-
out needing to interact directly with IaaS platforms, or to sign up
for accounts with third-party vendors.

In this paper, we report on our experience adapting Tsuru1, an
open-source PaaS, to work with our university’s existing Microsoft
Azure infrastructure, and using the platform in a variety of courses.
We will discuss challenges faced and lessons learned, aiming to give
actionable advice and recommendations to fellow educators who
might wish to set up a similar system in their own institution.

2 Platform-as-a-Service
Until recently, many commercial cloud providers offered open free
usage tiers, allowing users a limited amount of cloud resources with-
out having to subscribe to a payment plan. For teaching software
engineering courses that focus on product development, rather
than cloud architecture, platforms like Heroku2 or fly.io3 provided
students with ways to conveniently deploy their applications to the
public internet reliably and securely, without having to configure
and manage a lot of infrastructure. This meant that students used
these platforms in much the same way as engineers at a startup or
small enterprise might do, outsourcing configuration of infrastruc-
ture and allowing them to concentrate on application development,
continuous delivery and customer value [11]. Our experience in
teaching agile development with a focus on getting feedback from
real users shows that being able to deploy something live to the
public internet is important to enable beta users to access it easily.
We want to keep the students’ focus on developing products incre-
mentally and gathering feedback, rather than complex deployment
infrastructure [1].

2.1 Prior Experiences of PaaS for Education
In previous years, we found the developer experience provided
by Heroku to be particularly effective for teaching. To deploy an
application, a student would need only to a) code it locally in a
supported language, b) write a very simple configuration file, c)
create a Heroku account, d) run three commands on the command
line to authenticate, create the application, and deploy. With this,
the application would be deployed live to the public internet.

Free access to tools like Heroku was very useful for teaching
and learning, allowing students the experience of using commercial
tools while not overwhelming themwith infrastructural complexity.
Educators at other institutions have reported similar success using
freely available public cloud provisions in their courses [8].

However, in recent times, the explosion in cryptocurrency min-
ing led to many enterprising miners creating large numbers of
free-tier accounts to use compute resources without paying for
them [3]. In light of this, most commercial cloud providers removed
or reduced their free offerings and further required each user to
register a credit card, thus mandating account verification and au-
tomatic billing for any significant use of their resources. While we

1https://tsuru.io
2https://herkou.com
3https://fly.io

wanted our students to be able to use these sorts of tools during
their studies, we could not ask them to sign up to an external service
using a credit card in order to complete their assignments.

2.2 Free PaaS options
There are still some cloud offerings that do provide a free usage
tier, but these tend to be much more limited in what they offer
technically. For example, Vercel4 offers serverless function exe-
cution within their free tier and Supabase5 offers an increasing
range of functionality centered around a Postgres database, but
neither of these give the same functionality as Heroku where a full
web application can be deployed. Even where third-party services
are available for free, if students register their own accounts inde-
pendently on the platforms, this can limit the educators’ view of
what they are doing. Course leaders have no ability to access and
administer the accounts on behalf of their students.

Before creating an internal PaaS, we considered other related
technologies. The most popular open-source container-based PaaS
solutions seemed to be Dokku, CapRover and Coolify6. Each of
these was trialled in turn, but it was quickly determined that all of
these solutions are aimed at hobbyist developers or small teams.

2.3 Requirements for the Educational Context
We have identified specific needs for the educational context for
a PaaS solution to complement teaching and management of soft-
ware deployed by students. For faculty members teaching a course,
it is desirable to have holistic control over accounts, teams and
configuration options for students. The ability to view application
logs and deployment errors for any student’s application facili-
tates troubleshooting by teaching staff, especially when responding
to queries asynchronously. If students register their accounts and
applications independently on third-party platforms, an educator-
focused management paradigm is not feasible.

An essential feature is granular role-based access control (RBAC),
allowing students to deploy and manage their own applications
in isolation while preventing them from interfering with others.
Notably, the alternative PaaS options we considered lacked func-
tionality to arrange users within teams and restrict permissions to
specific contexts; educators demand higher privileges than students.

Another requirement is to enable account registration and appli-
cation deployment without payment details. We could resolve this
issue by taking out a subscription to a commercial PaaS on behalf
of the university and enrolling all students as users. However, none
of the commercial PaaS providers we have looked at have an ex-
plicit educational offering, and purchasing a license as an enterprise
customer is typically very expensive. A contract with Heroku that
would allow all of our students to use the service would cost tens of
thousands of dollars per month. This is not a cost that we can bear
to support students completing class assignments and projects.

4https://vercel.com
5https://supabase.com
6https://dokku.com, https://caprover.com and https://coolify.io respectively

https://tsuru.io
https://herkou.com
https://fly.io
https://vercel.com
https://supabase.com
https://dokku.com
https://caprover.com
https://coolify.io


Creating a Student-Friendly PaaS Platform: Experiences with Tsuru in Software Engineering Education ESEC/FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

3 An Internal PaaS Using Tsuru
Beyond the problems and general requirements previously stated,
we aimed to create an internal PaaS system with an implementa-
tion that supports a simple command-line interface (ideally with a
developer experience comparable to Heroku) and integrates with
the Microsoft Single Sign-On protocol used by our institution.

After some preliminary work exploring potential options (some
of which we discuss in Section 2.2), we settled on forking and
customising an existing open-source PaaS, Tsuru. Tsuru offers a
lot of the functionality that we were looking for, but it did require
some extension and configuration to make it work effectively in
our context. Notably, Tsuru’s primary target platform is GCP, but
we wanted to run it in Azure.

When adopting an open-source tool, there is always concern
about its maturity and continued maintenance. Tsuru is used com-
mercially by one of Brazil’s largest telecommunications companies,
Globo [10], which gave us confidence in its reliability and ability to
support production workloads.

3.1 Configuration and Implementation
Tsuru (Japanese for crane, in reference to the bird’s elegance and
simplicity) is designed to run on most of the popular cloud plat-
forms using a single account or subscription, and comes with a
Google Cloud Platform configuration by default. It supports the
standard PaaS notions of app (a uniquely identified entity to deploy
code against), service (e.g. a database or file storage) and token
(for performing actions in a secure and user-independent way, espe-
cially as part of CD practices), and offers a team-based organization
of users and apps. The software is designed to run on a Kubernetes
cluster and leverages Kubernetes’ ingress management, routing
and load-balancing capabilities to control the provisioning of com-
putational resources appropriate to each app. Information about
users, permissions, applications, etc. are stored in a MongoDB7
database and the Tsuru command-line interface (CLI) allows a user
to manage their applications, platforms, teams, tokens and more.

The typical deployment of an application in Tsuru is as follows:
a Tsuru app is created, in association with an individual user or
a team and targeting a supported platform (e.g. Python, Ruby,
Node.js, etc). Deployment of Dockerised applications is also sup-
ported. Upon issuing the deploy command to ‘push’ code to the
app, Tsuru builds and runs the code, and provisions an ingress
router with an application-specific SSL certificate. On a success-
ful deployment, the user can access the live app at the provided
URL and further inspect the app’s configuration with dedicated
commands.

Given our university’s existing subscription with Azure, we de-
ployed Tsuru on an Azure Kubernetes cluster. Tsuru’s abstractions
hide the underlying Kubernetes cluster but at times, the cluster
may require direct interaction. A small group of administrators has
direct access to Kubernetes, and can adjust settings such as the
number of nodes in the cluster. Tsuru makes use of Helm Charts to
configure the cluster. Students do not need to interact with Kuber-
netes directly, but it is beneficial for administrators to understand
Kubernetes and associated tools.

7https://www.mongodb.com/

Authentication is achieved using OAuth via an app registration
in Azure, allowing users to authenticate with their university login
details via Microsoft Entra. This means that students and faculty
can log in to Tsuru using their regular university credentials, with
no need to create new accounts. To allow for dynamic provision
of database resources, we implemented a MySQL database service
provider, and later a PostgreSQL provider, following a standard
Tsuru pattern. This allows users to create databases in Azure and
link them to applications deployed within Tsuru.

We have made our Tsuru extensions and configuration available
to other educators via GitHub: https://github.com/impaas

3.2 Exploring the Developer Experience
Before designing teaching materials around Tsuru, we trialled the
developer experience by designing and deploying some new ap-
plications supporting administrative tasks within our department.
These ranged from student project allocations to reviewing univer-
sity applications from prospective students. The approach we took
was exactly the one a group of students might follow: we created a
Tsuru team, assigned ourselves as members of that team, created
an application in a particular language, and provisioned database
services to store relevant data.

Building several small applications allowed us to go through the
complete application development cycle multiple times, and gain
familiarity with working with Tsuru from a developer’s point of
view. We thoroughly explored the space of features that students
might use in a class project, for example, manipulating environ-
ment variables in production, inspecting app logs, and managing
application state. We tested the flexibility of the platform with re-
spect to supporting different technology stacks and architectural
choices e.g. deploying a Python API with a separate React frontend,
a full-stack application written using Next.JS, and a Java servlet.
We also tested triggering deployments to Tsuru from GitLab CI/CD
and GitHub Actions workflows, to ensure that it would fit with the
DevOps patterns that we teach our students.

By working through these different use cases, we were able to
refine our understanding to the point that we could design guided
tutorials for students that allowed them to use the platform to
complete in-class exercises. Overall, we were pleased to find that
the developer experience offered by Tsuru was very close to that
offered by Heroku – three simple steps: log in, create app, deploy.

4 Teaching with Tsuru
Our first forays into teaching with the Tsuru platform were in
a masters course called Software Systems Engineering (SSE) with
approximately 60 students who had little previous experience in
computing or software engineering. The group of staff running
the course were closely involved with setting up Tsuru, and had
overall administrator privileges. At this scale, the team could handle
any problems through 1:1 interactions during in-person laboratory
classes, or asynchronously via online forums.

4.1 Course Design
The SSE course focuses on skills adjacent to programming that are
needed to build a modern software system collaboratively. It takes a
thin slice through a range of topics: the web, networking, databases,

https://www.mongodb.com/
https://github.com/impaas


ESEC/FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Chatley et al.

version control, build pipelines, continuous delivery, consuming
data from APIs, and cloud platforms. The course design covers each
of the above topics in a practical way, allowing students to build
something at each stage through guided laboratory exercises, then
integrating the different topics into a more significant project at
the end of the course. The PaaS paradigm fits well here as it allows
students to build a simple application and deploy it so that they
(and their friends) can access it from their laptops and phones. As a
lot of the complexity of the cloud is hidden by the simple developer
experience of our internal PaaS, we are able to do this early on, and
we had students deploying their first applications in the second
week of the course.

At this stage, the applications are, understandably, not complex.
Typically they are just “hello world” applications, perhaps with
the submission of an HTML form and the processing of submitted
parameters to yield a results page. We have used Python and Flask
because (in our opinion) these give the most accessible starting
point for new web developers.

While it may be tempting to have students go deeper and develop
larger applications, we believe it is more valuable instead to pause
coding at this early point and have them deploy their walking
skeleton to production. This approach offers the opportunity to
teach more software engineering principles without the need for
students to be advanced programmers. Just being able to define a
few functions is enough to construct a basic application, and then
most of the learning that follows can be around the mechanisms and
techniques we use to make changes in a controlled way. We then
discuss notions of quality, whereby deployment should happen only
if the code is in a good state. We introduce some simple automated
checks and tests, demonstrate how these can be orchestrated in a
build pipeline using GitHub Actions, and add a final step deploying
to Tsuru using our custom GitHub Action.

The students could then take this pipeline forward to use in
their end-of-course projects, where they worked over a two-week
period in teams of four building an application that showcased the
technical concepts from the course.

4.2 Student Experience
Our aim was to provide students with a smooth path to deployment,
without convoluted setup, as we had previously experienced with
Heroku. Tsuru did provide this with its 3-line deployment expe-
rience and all of our students managed to deploy an application
successfully in the course of a single laboratory session.

Something that could be considered either a strength or a weak-
ness of the chosen approach is that the students did not acquire
an in-depth understanding of the infrastructure behind their ap-
plication (web servers, containers, networking, Kubernetes, Azure
configuration, etc). The advantage of Tsuru’s abstraction here is
that students do not need to study these concepts in depth or under-
stand them before completing a full cycle of development, and can
concentrate on understanding what the different development tools
do, rather than how they work. The downside is that the underlying
technology is concealed and students only have a surface-level in-
troduction to infrastructure topics; they cannot gain the mechanical
sympathy that might allow them to troubleshoot problems later on
when they start to develop more sophisticated systems.

An easy deployment experience enabled students to make small
changes to their application and to see the effect of the build pipeline
on catching code that did not pass the quality checks, preventing
deployment from going ahead, while automating the path to pro-
duction whenever a commit was good. Having the students set up
a complete deployment pipeline early in the course put them in
a position where it was easy, and even natural, to deploy a new
version of their software after every change that they made through
the following weeks of the course. This is a working pattern that
we would like to encourage, as it aligns well with the practices of
effective professional development teams [4].

We observed that when our students were able to deploy their
application easily and reliably to the public internet, this gave them
a sense of achievement and excitement about what they could build.

4.3 Instructor Experience
The choice to adopt a self-hosted professional PaaS brought about
the great and multi-faceted benefit of full administrative control
over permissions and access privileges. After our preliminary inves-
tigation into Tsuru’s role-based access control model and CLI (see
Section 3.2), we were able to implement a simple suite of scripts
to create teams and team-bound apps in bulk as the course lab
schedule demanded. We assigned team-level privileges not only
to the actual team members, but also to course instructors who
could then inspect deployments via the Tsuru CLI any time they
wanted. This proved especially convenient to assist students with
queries on our online forums outside of the allocated laboratory
hours: instead of posting partial screenshots of their logs and envi-
ronment variables, often insufficient if not altogether unhelpful to
staff trying to troubleshoot, students could simply reference their
application name, which instructors could use to access the live pro-
duction environment and view application error logs directly. This
instructor access aligned well with our educational mission and
was a crucial improvement in this sense over the industry standard
offered by Heroku and similar proprietary PaaS systems, which
generally offer team features and comparable fine-grain permission
management only in their paid tiers, and often with costs further
growing alongside the number of teams.

As we set up resources, we realised that Tsuru’s user model
mirrors a generic company structure where users either work inde-
pendently or in teams. That same model does not serve the coarser
organisational structure typical of higher education. In such a set-
ting, a notion of course, cohort, or even department to further group
teams togethermay be desirable for a cleaner separation of concerns
and a more precise, convenient and secure management of roles
and permissions. This was not a blocker to our immediate needs,
and we managed to successfully work around this limitation by
using consistent naming conventions for apps, teams and tokens,
but given our plans for a wider adoption of Tsuru (see Section 5.3)
we believe this could be an area for future improvement.

4.4 Notable Technical Challenges
Tsuru has a powerful, but complex, permissions model. Careful
thought must be given to configuring permissions for students. It
took us some time to find the right set of permissions for students in



Creating a Student-Friendly PaaS Platform: Experiences with Tsuru in Software Engineering Education ESEC/FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

a class that gave them enough power to complete their assignments
without being able to affect resources owned by other users.

Another aspect of Tsuru to consider from an administrator point
of view is its internal use of Nginx [9] for ingress routing. Nginx
has its own configuration, and we soon realised that this adds
an extra layer of complexity that is entirely hidden from the CLI.
For example, the default Nginx configuration shipped with Tsuru
silently ignores large HTTP headers, causing unexpected issues
with applications that rely on these. Such issues proved difficult to
identify as they were not reflected in application error logs, and
fixing them required editing Nginx configuration templates.

5 Discussion
Reflecting on our experience with Tsuru, the largely positive out-
comes also came with challenges and costs, which we detail below.

5.1 Operating Costs
While the Tsuru software itself is free, running it on Azure does
incur costs. With our setup, the baseline cost for running the plat-
form with no applications deployed is approximately 12 USD per
day. Expanding the cluster to host approximately 50 applications
concurrently took the cost to around 25 USD per day. Running at
this capacity permanently would yield a monthly bill of under 1000
USD – significantly lower than the estimates we made for com-
mercial PaaS agreements. In fact, our overall cost was considerably
lower than this as we were able to scale back the size of the cluster
once assignments were complete.

The Kubernetes cluster can be configured to automatically scale
to match load. This is generally a helpful feature, but we found
it helpful to put a limit on the number of nodes, which put a pre-
dictable ceiling on the potential cost. However, at busy times and
if the cluster is over capacity, some students might not be able
to deploy successfully; in an academic environment, this seems
preferable to uncontrolled costs.

5.2 Lessons Learned
Tsuru effectively abstracts the complexities of the cloud. It allows
students to deploy their software to the public internet without
needing a deep knowledge of the cloud, containers or Kubernetes.
Running a PaaS platform ourselves removes the need for students
to sign up to third party vendors with their own credit cards. While
the cost for hosting our platform is not zero, wewere able to manage
resources effectively and the overall cost seems reasonable for the
size of cohorts we were teaching.

Using a PaaS enables students to experience a quick end-to-end
path to production. Being able to deploy a real application live
in a short timeframe proved very rewarding for our students. An
internal platform enables instructors to support students better.
A key example of this is that instructors can easily access logs
for a student’s application to help them debug problems, which is
difficult when students use third party services to deploy.

5.3 Extending to Wider Contexts
The next stages are to use the platform in courses run by other staff
in the same department, with larger cohorts, and then more widely
by staff and students outside the computer science department.

At the time of writing, we are beginning a DevOps course for a
cohort of 250 undergraduate students that runs over 2-3 weeks
and involves deploying a web application through an automated
build pipeline. Having ironed out some initial difficulties during
the masters course, we are confident that Tsuru should work well
for this course, although we expect to need to scale up the capacity
available in the Kubernetes cluster for the duration of the course.

In order to fit with our undergraduate computer science curricu-
lum, the DevOps laboratory exercise uses a template application
written in Java. Our installation of Tsuru was not initially set up
to support Java applications, but Tsuru offers the ability to add
support for different languages (e.g. Java, Go, PHP, and more) by
adding platforms. For supported languages, this is a matter of an ad-
ministrator running a single command. It is worth noting however
that a Java application consumes more resources than a similar ap-
plication written in Python or Go, so it will be important to monitor
resource usage as more applications are deployed.

At the end of the year, we plan to use Tsuru for our Designing
for Real People (DRP) project-based course [1] with a large cohort
of approximately 60 groups. The student groups are asked to de-
velop digital tools, typically web or mobile applications, to solve
a real-world problem. We do not give the students any specific
constraints in terms of technology choices, so at this stage students
may ask for more platforms to be added to Tsuru. It remains to be
seen whether there are any limits on this technically, but there is
perhaps a concern that if a language is supported by the platform,
instructors should also be able to assist students using it. Given
the rate of change of web development technology, this may well
not be possible, so it may be the case that we can provide better
education if we restrict the range of supported languages.

The final stage of rollout is to allow use of the platform beyond
the Department of Computing. We have conducted an initial trial
with the Department of Bioengineering which offers a software
development course for its own students. This course teaches Java
programming, and covers web programming with servlets. Initial
trials showed that they were able to deploy easily to our Tsuru
instance once Java was configured. We added the students and
course leader as users on the platform, but nothing further was
needed, given that authenticationwas being handled centrally using
university login credentials.

Our experience so far shows that our internal PaaS built with
Tsuru has improved the experience of both educators and students.
As software engineering cuts across many different subject areas in
the modern world, we hope to expand use of the platform across the
university in future, supporting both specialist computer scientists
and developers from other disciplines.

Acknowledgments
This project was completed in collaborationwith the TechnologyOf-
fice within Imperial’s central ICT organization, particularly Richard
Howells and Nelson Cerqueira, and supported by funding from the
university’s Digital Innovation Fund. A lot of the initial prototyping
work on setting up Tsuru and adapting it to work in our environ-
ment was done by a group of our undergraduate students: Aaryan
Dharmadikari, Aaryan Purohit, Sachin Wadhwani, Ajay Mittal,
Thom Hughes and Rushil Ambati.



ESEC/FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Chatley et al.

References
[1] Robert Chatley, Tony Field, Mark Wheelhouse, Carolyn Runcie, Clive Grinyer,

and Nick de Leon. 2023. Designing for Real People: Teaching Agility through
User-Centric Service Design. In Proceedings of the 45th International Conference on
Software Engineering: Software Engineering Education and Training (Melbourne,
Australia) (ICSE-SEET ’23). IEEE Press, 11–22. https://doi.org/10.1109/ICSE-
SEET58685.2023.00007

[2] Robert Chatley and Ivan Procaccini. 2020. Threading DevOps Practices through
a University Software Engineering Programme. In 2020 IEEE 32nd Conference on
Software Engineering Education and Training (CSEE&T). IEEE, 1–5.

[3] Catalin Cimpanu. 2021. Crypto-mining gangs are running amok on free
cloud computing platforms. https://therecord.media/crypto-mining-gangs-are-
running-amok-on-free-cloud-computing-platforms. Accessed: Jan 2025.

[4] Nicole Forsgren, Jez Humble, and Gene Kim. 2018. Accelerate: The Science of
Lean Software and DevOps Building and Scaling High Performing Technology
Organizations (1st ed.). IT Revolution Press.

[5] Camille Fournier and Ian Nowland. 2024. Platform Engineering. O’Reilly Media.
[6] Gregor Hohpe. 2024. Platform Strategy. LeanPub.

[7] Gene Kim, Patrick Debois, John Willis, and Jez Humble. 2016. The DevOps Hand-
book: How to Create World-Class Agility, Reliability, and Security in Technology
Organizations. IT Revolution Press.

[8] Zheng Li. 2020. Using public and free platform-as-a-service (PaaS) based
lightweight projects for software architecture education. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering: Software Engi-
neering Education and Training (Seoul, South Korea) (ICSE-SEET ’20). Association
for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/
3377814.3381704

[9] Will Reese. 2008. Nginx: the high-performance web server and reverse proxy.
Linux J. 2008, 173, Article 2 (Sept. 2008).

[10] Jonathan Reimer. 2025. Open Source Alternatives to Heroku. https://www.
opensourcealternative.to/project/tsuru. Accessed: Apr 2025.

[11] Rehmana Younis, Mansoor Iqbal, Khalid Munir, Muhammad Aaqib Javed, Muham-
mad Haris, and Saad Alahmari. 2024. A Comprehensive Analysis of Cloud Service
Models: IaaS, PaaS, and SaaS in the Context of Emerging Technologies and Trend.
In 2024 International Conference on Electrical, Communication and Computer
Engineering (ICECCE). 1–6. https://doi.org/10.1109/ICECCE63537.2024.10823401

https://doi.org/10.1109/ICSE-SEET58685.2023.00007
https://doi.org/10.1109/ICSE-SEET58685.2023.00007
https://therecord.media/crypto-mining-gangs-are-running-amok-on-free-cloud-computing-platforms
https://therecord.media/crypto-mining-gangs-are-running-amok-on-free-cloud-computing-platforms
https://doi.org/10.1145/3377814.3381704
https://doi.org/10.1145/3377814.3381704
https://www.opensourcealternative.to/project/tsuru
https://www.opensourcealternative.to/project/tsuru
https://doi.org/10.1109/ICECCE63537.2024.10823401

	Abstract
	1 Introduction
	2 Platform-as-a-Service
	2.1 Prior Experiences of PaaS for Education
	2.2 Free PaaS options
	2.3 Requirements for the Educational Context

	3 An Internal PaaS Using Tsuru
	3.1 Configuration and Implementation
	3.2 Exploring the Developer Experience

	4 Teaching with Tsuru
	4.1 Course Design
	4.2 Student Experience
	4.3 Instructor Experience
	4.4 Notable Technical Challenges

	5 Discussion
	5.1 Operating Costs
	5.2 Lessons Learned
	5.3 Extending to Wider Contexts

	Acknowledgments
	References

